
1

0.1 Objective
The objectives of the experiment is to learn the following:

 Give a quick introduction about Python object oriented Programming (OOP).

 Define classes in Python.

 Show some examples about Inheritance.

 Explain what are Polymorphism in OOP.

 Show Difference between method Overloading and Overriding.

 Show how to handle any unexpected error in your Python programs.

0.2 Introduction to Python OOP
Python has been an object-oriented language since it existed. Because of this, creating and using classes
and objects are downright easy. This experiment helps you become an expert in using Python's object-
oriented programming support.
 If you do not have any previous experience with object-oriented OO programming, you may want to
consult an introductory course on it or at least a tutorial of some sort so that you have a grasp of the
basic concepts. However, here is small introduction of Object-Oriented Programming OOP to bring you
at speed.

Class: A class describes all the attributes of objects, as well as the methods that implement the behavior
of member objects. It is a comprehensive data type, which represents a blue print of objects. It is a
template of object.
Object:Object is instance of classes. It is a basic unit of a system. An object is an entity that has
attributes, behavior, and identity. Attributes and behavior of an object are defined by the class
definition.
Polymorphism: using an entity in multiple forms.

Inheritance:Promotes the reusability of code and eliminates the use of redundant code. It is the
property through which a child class obtains all the features defined in its parent class. When a class
inherits the common properties of another class, the class inheriting the properties is called a derived
class and the class that allows inheritance of its common properties is called a base class.

Function Overriding:Overriding involves the creation of two or more methods with the same name
and same signature in different classes (one of them should be parent class and other should be child).
Function Overloading:Overloading is a concept of using a method at different places with same name
and different signatures within the same class.
Abstraction:Refers to the process of exposing only the relevant and essential data to the users without
showing unnecessary information.

9
Python Object Oriented

Programming (OOP)

2

0.3 Classes in Python

Create Class In python
The class statement creates a new class definition. The name of the class immediately follows the
keyword class followed by a colon as follows:

class ClassName:
 'Optional class documentation string'
 class_suite

 The class has a documentation string, which can be accessed via ClassName.__doc__.
 The class_suite consists of all the component statements defining class members, data attributes

and functions.
Example1: open employee.py file

class Employee:
 'Common base class for all employees'
 empCount = 0
 def __init__(self, name, salary):
 self.name = name
 self.salary = salary
 Employee.empCount += 1
 def displayCount(self):
 print("Total Employee %d" % Employee.empCount)
 def displayEmployee(self):
 print("Name : ", self.name, ", Salary: ", self.salary)

 The variable empCount is a class variable whose value is shared among all instances of a this class.
This can be accessed as Employee.empCount from inside the class or outside the class.

 The first method __init__() is a special method, which is called class constructor or initialization
method that Python calls when you create a new instance of this class.

 You declare other class methods like normal functions with the exception that the first argument
to each method is self. Python adds the self argument to the list for you; you do not need to
include it when you call the methods.

Getters and Setters
Getters and setters are used in many object oriented programming languages to ensure the

principle of data encapsulation.

The following example demonstrate how we can design a class with getters and setters to

encapsulate the private attribute "self.__x":
class P:

 def __init__(self,x):

 self.__x = x

 def get_x(self):

 return self.__x

 def set_x(self, x):

 self.__x = x

Creating Instance Object
To create instances of a class, you call the class using class name and pass in whatever arguments
its __init__ method accepts.

3

from employee import *
#This would create first object of Employee class
emp1 = Employee("Aziz", 15000)
#This would create second object of Employee class
emp2 = Employee("Mohammad", 1000)

Accessing Attributes
You access the object's attributes using the dot operator with object. Class variable would be accessed
using class name as follows :

emp1.displayEmployee()
emp2.displayEmployee()
print("Total Employee %d" % Employee.empCount)

Destroying Objects (Garbage Collection)
Python deletes unneeded objects (built-in types or class instances) automatically to free the memory
space. The process by which Python periodically reclaims blocks of memory that no longer are in use is
termed Garbage Collection.
You can delete a single object or multiple objects by using the del statement.

del var
del var_a, var_b

You can add, remove, or modify attributes of classes and objects at any time

emp1.age = 7 # Add an 'age' attribute.
emp1.age = 8 # Modify 'age' attribute.
del emp1.age # Delete 'age' attribute.

Instead of using the normal statements to access attributes, you can use the following functions −
 The getattr(obj, name[, default]) : to access the attribute of object.
 The hasattr(obj,name) : to check if an attribute exists or not.
 The setattr(obj,name,value) : to set an attribute. If attribute does not exist, then it would be

created.
 The delattr(obj, name) : to delete an attribute.

print(hasattr(emp1, 'age')) # Returns true if 'age' attribute exists
print(getattr(emp1, 'name')) # Returns value of 'age' attribute
setattr(emp1, 'salary', 8) # Set attribute 'age' at 8
delattr(emp1, 'salary') # Delete attribute 'age'

4

0.4 Built-In Class Attributes
Every Python class keeps following built-in attributes and they can be accessed using dot operator like
any other attribute :

 __dict__: Dictionary containing the class's namespace.
 __doc__: Class documentation string or none, if undefined.
 __name__: Class name.
 __module__: Module name in which the class is defined. This attribute is "__main__" in

interactive mode.
 __bases__: A possibly empty tuple containing the base classes, in the order of their occurrence

in the base class list.
For the above class let us try to access all these attributes:
Example2:

#!/usr/bin/python

class Employee:
 'Common base class for all employees'
 empCount = 0
 def __init__(self, name, salary):
 self.name = name
 self.salary = salary
 Employee.empCount += 1
 def displayCount(self):
 print("Total Employee %d" % Employee.empCount)
 def displayEmployee(self):
 print("Name : ", self.name, ", Salary: ", self.salary)
print("Employee.__doc__:", Employee.__doc__)
print("Employee.__name__:", Employee.__name__)
print("Employee.__module__:", Employee.__module__)
print("Employee.__bases__:", Employee.__bases__)
print("Employee.__dict__:", Employee.__dict__)

Output:

Employee.__doc__: Common base class for all employees
Employee.__name__: Employee
Employee.__module__: __main__
Employee.__bases__: ()
Employee.__dict__: {'__module__': '__main__', 'displayCount':
<function displayCount at 0xb7c84994>, 'empCount': 2,
'displayEmployee': <function displayEmployee at 0xb7c8441c>,
'__doc__': 'Common base class for all employees',
'__init__': <function __init__ at 0xb7c846bc>}

5

0.5 Class Inheritance
Instead of starting from scratch, you can create a class by deriving it from a preexisting class by listing
the parent class in parentheses after the new class name.
The child class inherits the attributes of its parent class, and you can use those attributes as if they were
defined in the child class. A child class can also override data members and methods from the parent.
Syntax
Derived classes are declared much like their parent class; however, a list of base classes to inherit from
is given after the class name :

class SubClassName ([ParentClass1, ParentClass2, ...]):
 'Optional class documentation string'
 class_suite

Example3:

#!/usr/bin/python
class Parent: # define parent class
 parentAttr = 100
 def __init__(self):
 print("Calling parent constructor")
 def parentMethod(self):
 print('Calling parent method')
 def setAttr(self, attr):
 Parent.parentAttr = attr
 def getAttr(self):
 print("Parent attribute :", Parent.parentAttr)
class Child(Parent): # define child class
 def __init__(self):
 print("Calling child constructor")
 def childMethod(self):
 print('Calling child method')
c = Child() # instance of child
c.childMethod() # child calls its method
c.parentMethod() # calls parent's method
c.setAttr(200) # again call parent's method
c.getAttr() # again call parent's method

Output:

Calling child constructor
Calling child method
Calling parent method
Parent attribute : 200

6

Similar way, you can drive a class from multiple parent classes as follows :

class A: # define your class A
.....
class B: # define your class B
.....
class C(A, B): # subclass of A and B
.....

You can use issubclass() or isinstance() functions to check a relationships of two classes and instances.
 The issubclass(sub, sup) boolean function returns true if the given subclass sub is indeed a

subclass of the superclass sup.
 The isinstance(obj, Class) boolean function returns true if obj is an instance of class Class or is an

instance of a subclass of Class.

0.6 Overriding Methods
You can always override your parent class methods. One reason for overriding parent's methods is
because you may want special or different functionality in your subclass.
Example4:

#!/usr/bin/python
class Parent: # define parent class
 def myMethod(self):
 print('Calling parent method')
class Child(Parent): # define child class
 def myMethod(self):
 print('Calling child method')
c = Child() # instance of child
c.myMethod() # child calls overridden method

7.0 Overloading Methods
Following table lists some generic functionality that you can override in your own classes −

SN Method, Description & Sample Call

1 __init__ (self [,args...])
Constructor (with any optional arguments)
Sample Call : obj = className(args)

2 __del__(self)
Destructor, deletes an object
Sample Call : del obj

3 __str__(self)
Printable string representation
Sample Call : str(obj)

4 __cmp__ (self, x)
Object comparison
Sample Call : cmp(obj, x)

7

Overloading Operators
Suppose you have created a Vector class to represent two-dimensional vectors, what happens when you
use the plus operator to add them? Most likely Python will yell at you.
You could, however, define the __add__ method in your class to perform vector addition and then the
plus operator would behave as per expectation.
Example5:

#!/usr/bin/python
class Vector:
 def __init__(self, a, b):
 self.a = a
 self.b = b
 def __str__(self):
 return 'Vector (%d, %d)' % (self.a, self.b)
 def __add__(self,other):
 return Vector(self.a + other.a, self.b + other.b)
v1 = Vector(2,10)
v2 = Vector(5,-2)
print(v1 + v2)

Output:

Vector(7,8)

0.8 Attributes types and Data Hiding
An object's attributes may or may not be visible outside the class definition. You need to name attributes
with a double underscore prefix, and those attributes then are not be directly visible to outsiders.

The following table summarize the attribute types:

Naming Type Meaning

name Public These attributes can be freely used inside or outside of a class definition.

_name Protected Protected attributes should not be used outside of the class definition,
 unless inside of a subclass definition.

__name Private This kind of attribute is inaccessible and invisible. It's neither possible to
read nor write to those attributes, except inside of the class definition itself.

Example6:

#!/usr/bin/python
class JustCounter:
 __secretCount = 0

 def count(self):
 self.__secretCount += 1
 print(self.__secretCount)
counter = JustCounter()

8

counter.count()
counter.count()
print(counter.__secretCount)

Output:

1
2
Traceback (most recent call last):
 File "test.py", line 10, in <module>
 print(counter.__secretCount)
AttributeError: JustCounter instance has no attribute '__secretCount'

Python protects those members by internally changing the name to include the class name. You can
access such attributes as object._className__attrName. If you would replace your last line as following,
then it works for you −

.........................
print(counter._JustCounter__secretCount)

When the above code is executed, it produces the following result −

1
2
2

0.9 Polymorphism:
Sometimes an object comes in many types or forms. If we have a button, there are many different draw
outputs (round button, check button, square button, button with image) but they do share the same
logic: onClick(). We access them using the same method . This idea is called Polymorphism.
Polymorphism is based on the greek words Poly (many) and morphism (forms). We will create a
structure that can take or use many forms of objects.
Example7:
We create two classes: Bear and Dog, both can make a distinct sound. We then make two instances
and call their action using the same method.

class Bear(object):
 def sound(self):
 print("Groarrr")
class Dog(object):
 def sound(self):
 print("Woof woof!")
def makeSound(animalType):
 animalType.sound()
bearObj = Bear()
dogObj = Dog()
makeSound(bearObj)
makeSound(dogObj)

Output:

Groarrr
Woof woof!

9

0.10 Polymorphism with abstract class (most commonly used)

If you create an editor you may not know in advance what type of documents a user will open (pdf
format or word format)?.
Wouldn’t it be great to access them like this, instead of having 20 types for every document?

for document in documents:
 print(document.name + ': ' + document.show())

To do so, we create an abstract class called document. This class does not have any implementation but
defines the structure (in form of functions) that all forms must have. If we define the function
show() then both the PdfDocument and WordDocument must have the show() function. Full code:

Example8:

class Document:
 def __init__(self, name):
 self.name = name
 def show(self):
 raise NotImplementedError("Subclass must implement abstract method")
class Pdf(Document):
 def show(self):
 return 'Show pdf contents!'
class Word(Document):
 def show(self):
 return 'Show word contents!'

documents = [Pdf('Document1'),
 Pdf('Document2'),
 Word('Document3')]

for document in documents:
 print(document.name + ': ' + document.show())

Output:

Document1: Show pdf contents!
Document2: Show pdf contents!
Document3: Show word contents!

10

0.11 Python Exceptions Handling
Python provides two very important features to handle any unexpected error in your Python programs
and to add debugging capabilities in them:

 Exception Handling
 Assertions

In this Experiment, Exception Handling would be covered.

Exception Handling
An exception is an event, which occurs during the execution of a program that disrupts the normal flow
of the program's instructions. In general, when a Python script encounters a situation that it cannot cope
with, it raises an exception. An exception is a Python object that represents an error.
When a Python script raises an exception, it must either handle the exception immediately otherwise it
terminates and quits.
List of some Standard Exceptions :

EXCEPTION NAME DESCRIPTION

Exception Base class for all exceptions

ArithmeticError Base class for all errors that occur for numeric calculation.

OverflowError Raised when a calculation exceeds maximum limit for a numeric type.

FloatingPointError Raised when a floating point calculation fails.

ZeroDivisonError Raised when division or modulo by zero takes place for all numeric types.

AssertionError Raised in case of failure of the Assert statement.

AttributeError Raised in case of failure of attribute reference or assignment.

EOFError Raised when there is no input from input() function and the end of file is reached.

ImportError Raised when an import statement fails.

KeyboardInterrupt Raised when the user interrupts program execution, usually by pressing Ctrl+c.

IndexError Raised when an index is not found in a sequence.

NameError Raised when an identifier is not found in the local or global namespace.

Syntax
Here is simple syntax of try.... except ...else blocks:

try:
 You do your operations here;

except ExceptionI:
 If there is ExceptionI, then execute this block.

11

except ExceptionII:
 If there is ExceptionII, then execute this block.

else:
 If there is no exception then execute this block.

Here are few important points about the above-mentioned syntax −

 A single try statement can have multiple except statements. This is useful when the try block
contains statements that may throw different types of exceptions.

 You can also provide a generic except clause, which handles any exception.
 After the except clause(s), you can include an else-clause. The code in the else-block executes if

the code in the try: block does not raise an exception.
 The else-block is a good place for code that does not need the try: block's protection.

Example9:

#!/usr/bin/python
try:
 fh = open("testfile", "w")
 fh.write("This is my test file for exception handling!!")
except IOError:
 print("Error: can\'t find file or read data")
else:
 print("Written content in the file successfully")
 fh.close()

The except Clause with No Exceptions
You can also use the except statement with no exceptions defined as follows −

try:
 You do your operations here;

except:
 If there is any exception, then execute this block.

else:
 If there is no exception then execute this block.

This kind of a try-except statement catches all the exceptions that occur. Using this kind of try-except
statement is not considered a good programming practice though, because it catches all exceptions but
does not make the programmer identify the root cause of the problem that may occur.

12

The except Clause with Multiple Exceptions
You can also use the same except statement to handle multiple exceptions as follows −

try:
 You do your operations here;

except([Exception1, Exception2,...ExceptionN]):
 If there is any exception from the given exception list,
 then execute this block.

else:
 If there is no exception then execute this block

The try-finally Clause
You can use a finally: block along with a try: block. The finally block is a place to put any code that must
execute, whether the try-block raised an exception or not. The syntax of the try-finally statement is this:

try:
 You do your operations here;

 Due to any exception, this may be skipped.
finally:
 This would always be executed.

You cannot use else clause as well along with a finally clause.

Raising an Exceptions
You can raise exceptions in several ways by using the raise statement. The general syntax for
the raise statement is as follows.
Syntax

raise [Exception [, args [, traceback]]]

Example:
An exception can be a string, a class or an object. Most of the exceptions that the Python core raises are
classes, with an argument that is an instance of the class. Defining new exceptions is quite easy and can
be done as follows :

def functionName(level):
 if level < 1:
 raise "Invalid level!", level
 # The code below to this would not be executed
 # if we raise the exception

Note: In order to catch an exception, an "except" clause must refer to the same exception thrown either
class object or simple string. For example, to capture above exception, we must write the except clause
as follows:

13

try:
 Business Logic here...
except "Invalid level!":
 Exception handling here...
else:
 Rest of the code here...

0.12 todo
This part will be given to you by the teacher assistant in the lab time.

